library(duke)
library(palmerpenguins)
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(ggplot2)
library(ggmosaic)
This vignette aims to comprehensively demonstrate the use and
functionality of the package duke
. duke
is
fully integrated with the ggplot2
and allows for the
creation of Duke official branded visualizations that are color blind
friendly.
student_names <- c("Jack", "Annie", "Paul", "Aidan", "Jake", "Josh", "Grace", "Suzy", "Beth", "Taylor", "Tanner", "Lisa", "Jimmy", "Larry", "Patricia", "Laura", "Yasmin", "Tim")
student_grades <- c("A+", "B", "A+", "C", "D", "A+", "E", "C", "B-", "B-", "D", "A-", "B+", "A-", "A-", "D", "B", "E")
students <- tibble(student = student_names, grade = student_grades)
Scatter Plot - Continuous Color
plot <- ggplot(penguins, aes(x = bill_length_mm, y = bill_depth_mm)) +
geom_point(aes(color = body_mass_g)) +
labs(
title = "Bill Length vs. Bill Depth",
x = "Bill Length (mm)",
y = "Bill Depth (mm)"
)
plot +
scale_duke_continuous() +
theme_duke()
plot +
geom_point(aes(shape = species)) +
scale_duke_continuous() +
theme_duke()
plot +
scale_duke_continuous() +
theme_minimal()
Scatter Plot - Discrete Color
plot1 <- ggplot(penguins, aes(x = bill_length_mm, y = bill_depth_mm, color = species)) +
geom_point(size = 2) +
labs(title = "Bill Length vs. Bill Depth", x = "Bill Length (mm)", y = "Bill Depth (mm)")
ggplot(penguins, aes(x = bill_length_mm, y = bill_depth_mm)) +
geom_point(aes(color = species)) +
labs(
title = "Bill Length vs. Bill Depth",
subtitle = "This is the subtitle",
caption = "All text is in Duke Royal Blue",
x = "Bill Length (mm)",
y = "Bill Depth (mm)"
) +
facet_wrap(~species) +
theme_duke() +
scale_duke_color_discrete()
plot1 +
theme_duke() +
scale_duke_color_discrete()
plot1 +
scale_duke_color_discrete() +
theme_minimal()
Bar Plot
plot2 <- ggplot(penguins, aes(x = species, fill = species)) +
geom_bar() +
labs(title = "Distribution of Penguin Species", x = "Species", y = "Count")
m_penguins <- penguins %>%
dplyr::filter(sex == "male")
plot2.1 <- ggplot(m_penguins, aes(x = sex, fill = sex)) +
geom_bar()
plot2.1 +
scale_duke_fill_discrete() +
theme_duke()
# 8-category plot
plot2.2 <- ggplot(students, aes(x = grade, fill = grade)) +
geom_bar()
plot2.2 +
scale_duke_fill_discrete() +
theme_duke()
# 7-category plot
plot2.3 <- students %>%
slice(-13) %>%
ggplot(aes(x = grade, fill = grade)) +
geom_bar()
plot2.3 +
scale_duke_fill_discrete() +
theme_duke()
# 6-category plot
plot2.4 <- students %>%
slice(-c(9, 10, 13)) %>%
ggplot(aes(x = grade, fill = grade)) +
geom_bar()
plot2.4 +
scale_duke_fill_discrete() +
theme_duke()
# 5-category plot
plot2.4 <- students %>%
slice(-c(9, 10, 13, 7, 18)) %>%
ggplot(aes(x = grade, fill = grade)) +
geom_bar()
plot2.4 +
scale_duke_fill_discrete() +
theme_duke()
# 4-category plot
plot2.5 <- students %>%
slice(-c(9, 10, 13, 7, 18, 4, 8)) %>%
ggplot(aes(x = grade, fill = grade)) +
geom_bar()
plot2.5 +
scale_duke_fill_discrete() +
theme_duke()
Histogram
plot3 <- ggplot2::ggplot(penguins, aes(body_mass_g)) +
geom_histogram(ggplot2::aes(fill = species), alpha = 0.8) +
labs(title = "Distribution of Penguin Body Mass", caption = "(Colors used) \n Duke Royal Blue, Duke Navy Blue, Copper", x = "Body Mass (g)", y = "Count")
plot3 +
scale_duke_fill_discrete() +
theme_duke()
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
plot3 +
scale_duke_fill_discrete() +
theme_minimal()
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Box Plot
plot4 <- ggplot2::ggplot(penguins, ggplot2::aes(sex, body_mass_g)) +
ggplot2::geom_boxplot() +
ggplot2::labs(title = "Comparison of Body Mass By Sex", x = "Sex", y = "Body Mass (g)")
plot4 +
theme_duke()
plot4 +
theme_minimal()
Density Plot
plot5 <- ggplot2::ggplot(penguins, ggplot2::aes(bill_depth_mm)) +
ggplot2::geom_density(ggplot2::aes(fill = species)) +
ggplot2::labs(title = "Density of Penguin Bill Depth", x = "Bill Depth (mm)", y = "Densiy")
plot5 +
scale_duke_fill_discrete() +
theme_duke()
plot5 +
scale_duke_fill_discrete() +
theme_minimal()
Jitter Plot - Discrete Color
plot6 <- ggplot2::ggplot(penguins, ggplot2::aes(year, body_mass_g)) +
ggplot2::geom_jitter(ggplot2::aes(color = species)) +
ggplot2::labs(title = "Comparison of Body Mass By Year", x = "Year", y = "Body Mass (g)")
plot6 +
scale_duke_color_discrete() +
theme_duke()
plot6 +
scale_duke_color_discrete() +
theme_minimal()
## Jitter Plot - Discrete Color
plot6.1 <- ggplot2::ggplot(penguins, ggplot2::aes(year, body_mass_g)) +
ggplot2::geom_jitter(ggplot2::aes(color = bill_length_mm)) +
ggplot2::labs(title = "Comparison of Body Mass By Year", x = "Year", y = "Body Mass (g)")
plot6.1 +
scale_duke_continuous() +
theme_duke()
plot6.1 +
scale_duke_continuous() +
theme_minimal()
Line Plot
yearly_avg <- penguins %>%
filter(!is.na(bill_length_mm)) %>%
group_by(island, year) %>%
summarize(island, year, mean = mean(bill_length_mm)) %>%
distinct(island, year, .keep_all = T)
#> `summarise()` has grouped output by 'island', 'year'. You can override using
#> the `.groups` argument.
lineplot <- ggplot(data = yearly_avg, aes(x = as.factor(year), y = mean, group = island)) +
geom_line(aes(color = island), linewidth = 1) +
geom_point(aes(color = island)) +
labs(title = "Average Island Bill Length(mm) Per Year", x = "Year", y = "Average Bill Length (mm)") +
theme_duke() +
scale_duke_color_discrete()
lineplot
# with point shape and line pattern
lineplot.2 <- ggplot(data = yearly_avg, aes(x = as.factor(year), y = mean, group = island)) +
geom_line(aes(color = island, linetype = island), linewidth = 1) +
geom_point(aes(color = island, shape = island)) +
labs(title = "Average Island Bill Length(mm) Per Year", x = "Year", y = "Average Bill Length (mm)") +
theme_duke() +
scale_duke_color_discrete()
lineplot.2
Mosaic Plot
plot7 <- ggplot(data = penguins) +
ggmosaic::geom_mosaic(aes(x = ggmosaic::product(sex, island), fill = sex)) +
labs(title = "Penguin Sex vs. Island", x = "Island", y = "Penguin Sex", caption = "(Color from top to bottom) \n Granite, Duke Navy Blue, Duke Royal Blue")
plot7 +
scale_duke_fill_discrete() +
theme_duke()
plot7 +
scale_duke_fill_discrete() +
theme_minimal()
Label Plot
plot8 <- ggplot2::ggplot(penguins, ggplot2::aes(bill_length_mm, bill_depth_mm, fill = island)) +
ggplot2::geom_label(aes(label = island)) +
ggplot2::labs(title = "Bill Length/Depth by Island", x = "Bill Length (mm)", y = "Bill Depth (mm)")
plot8 +
scale_duke_fill_discrete() +
theme_duke()
plot8 +
scale_duke_fill_discrete() +
theme_minimal()
Quantile Plot
plot9 <- ggplot2::ggplot(penguins, ggplot2::aes(bill_length_mm, bill_depth_mm, color = species)) +
ggplot2::geom_quantile() +
ggplot2::labs(title = "Bill Length/Depth Quantiles", x = "Bill Length (mm)", y = "Bill Depth (mm)")
plot9 +
scale_duke_color_discrete() +
theme_duke()
plot9 +
scale_duke_color_discrete() +
theme_minimal()
Area Plot
plot10 <- ggplot2::ggplot(penguins, ggplot2::aes(body_mass_g, fill = species)) +
ggplot2::geom_area(stat = "bin") +
ggplot2::labs(title = "Area of Body Mass Index", x = "BMI")
plot10 +
scale_duke_fill_discrete() +
theme_duke()
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
plot10 +
scale_duke_fill_discrete() +
theme_minimal()
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Dot Plot
plot11 <- ggplot2::ggplot(penguins, ggplot2::aes(body_mass_g)) +
ggplot2::geom_dotplot(aes(fill = species)) +
ggplot2::labs(title = "Dotplot of BMI", x = "BMI")
plot11 +
scale_duke_fill_discrete() +
theme_duke()
#> Bin width defaults to 1/30 of the range of the data. Pick better value with
#> `binwidth`.
plot11 +
scale_duke_fill_discrete() +
theme_minimal()
#> Bin width defaults to 1/30 of the range of the data. Pick better value with
#> `binwidth`.
Frequency Polynomial Plot
plot12 <- ggplot2::ggplot(penguins, ggplot2::aes(body_mass_g)) +
ggplot2::geom_freqpoly(aes(color = species)) +
ggplot2::labs(title = "Frequency Polynomial Plot of BMI", x = "BMI")
plot12 +
scale_duke_color_discrete() +
theme_duke()
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
plot12 +
scale_duke_color_discrete() +
theme_minimal()
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Column Plot
plot13 <- ggplot2::ggplot(penguins, ggplot2::aes(species, body_mass_g, color = species)) +
ggplot2::geom_col() +
ggplot2::labs(title = "BMI By Species of BMI", x = "Species", y = "BMI")
plot13 +
scale_duke_color_discrete() +
theme_duke()
plot13 +
scale_duke_color_discrete() +
theme_minimal()
Violin Plot
plot14 <- ggplot2::ggplot(penguins, ggplot2::aes(species, body_mass_g, fill = species)) +
geom_violin(scale = "area") +
ggplot2::labs(title = "BMI By Species", x = "Species", y = "BMI")
plot14 +
scale_duke_fill_discrete() +
theme_duke()
plot14 +
scale_duke_fill_discrete() +
theme_minimal()
Count Plot
plot15 <- ggplot2::ggplot(penguins, ggplot2::aes(species, island, color = species)) +
geom_count() +
ggplot2::labs(title = "Species Count by Island", x = "Species", y = "Island")
plot15 +
scale_duke_color_discrete() +
theme_duke()
plot15 +
scale_duke_color_discrete() +
theme_minimal()
Step Plot
plot16 <- ggplot2::ggplot(penguins, ggplot2::aes(year, body_mass_g, color = species)) +
geom_step()
ggplot2::labs(title = "BMI By Year", x = "Year", y = "BMI")
#> $x
#> [1] "Year"
#>
#> $y
#> [1] "BMI"
#>
#> $title
#> [1] "BMI By Year"
#>
#> attr(,"class")
#> [1] "labels"
plot16 +
scale_duke_color_discrete() +
theme_duke()
plot16 +
scale_duke_color_discrete() +
theme_minimal()
Coordinate Polar
plot1 +
facet_wrap(~species) +
theme_bw() +
scale_duke_color_discrete()